☐ Class 11 Mathematics – Chapter: Straight Lines

1. Introduction

- Straight lines are the simplest curves in coordinate geometry.
- They have constant slope and extend infinitely in both directions.

2. Slope of a Line

The slope mmm measures the steepness of the line:

 $m=y2-y1x2-x1m = \frac{y_2 - y_1}{x_2 - x_1}m=x2-x1y2-y1$

Positive slope: line rises from left to	right

Negative slope: line falls from left to right.

Zero slope: horizontal line.

Undefined slope: vertical line.

3. Various Forms of the Equation of a Line

Slope-intercept form:

$$y=mx+cy = mx + cy=mx+c$$

where mmm is slope, ccc is y-intercept.

•

Point-slope form:

$$y-y1=m(x-x1)y - y_1 = m(x - x_1)y-y1=m(x-x1)$$

Two-point form:

$$y-y1y2-y1=x-x1x2-x1$$
{rac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}y2-y1y-y1=x2-x1x-x1}

Intercept form:

$$xa+yb=1\frac{x}{a} + \frac{y}{b} = 1ax+by=1$$

•

General form:

$$Ax+By+C=0Ax+By+C=0Ax+By+C=0$$

4. Distance of a Point from a Line

 $d= ||Ax1+By1+C||A2+B2d| = \frac{|Ax_1+By_1+C|}{|Ax_2+B_2||Ax_1+By_1+C|}$

5. Angle Between Two Lines

If slopes of lines are m1m_1m1 and m2m_2m2, then angle θ \theta θ between them is:

 $tan\theta = m1-m21+m1m2$ \tan \theta = \left | \frac{m_1 - m_2}{1 + m_1 m_2} \right | tan\theta = 1+m1m2m1-m2

6. Conditions for Parallel and Perpendicular Lines

Parallel: m1=m2m_1 = m_2m1=m2

Perpendicular: m1m2=-1m_1 m_2 = -1m1m2=-1

7. Applications

Geometry problems

Coordinate geometry proofs

Real-world line modeling

8. Exam Tips

Memorize all forms of line equations.

•

Practice slope calculation and converting between forms.

Solve problems on distance and angle between lines.

Understand conditions for parallelism and perpendicularity.